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The objective of this paper is to compare three optimization-based 
methods for solving aerodynamic design problems. We use the Euler 
equations for one-dimensional duct flow as a model problem. The 
optimization methods are (i) the black-box method with finite dif- 
ference gradients, (ii) a modification where gradients are found by an 
algorithm based on the implicit function theorem, and (iii) an all-at- 
once method where the flow and design variables are simultaneously 
altered. The three methods are applied to the model problem and com- 
pared for efficiency, robustness, and implementation difficulty. We also 
show that the black-box (implicit gradient) method is equivalent to 
applying the “variational” or “optimal control” approach to design 
optimization directly to the discretized analysis problem, rather than to 
the continuous problem as is usually done. The black-box method with 
implicit gradients seems to provide a good compromise of features, and 
can be retrofitted to most existing analysis codes to turn them into 
design codes. Although the all-at-once method was found to be less 
robust than the black-box methods, when it succeeded it was 
considerably more efficient. c 1992 Academic Press, Inc. 

1. INTRODUCTION 

Most of the effort in devising schemes for solving com- 
putational aerodynamics problems has focused on the 
forward, or analysis problem: given the shape of the airfoil 
(or aircraft), what will be the flow of air over it? Of more 
direct use in designing an aircraft is the solution of the more 
difficult inverse, or design problem: given the flow, what 
shape will produce it? Recently, due to improved methods 
for solving the analysis problem, and also due to increases 
in available computational power, there has been renewed 
interest in attacking the design problem. 

Many different approaches to solving the design problem 
have been developed; these are nicely summarized in [ 11. 
For our purposes, these approaches can be separated into 
two fundamental classes. In the first class, one attempts to 
solve the inverse problem by (essentially) manipulating the 
equations governing the geometry and the flow so that the 
geometry can be solved for, once the flow is specified. In the 
second class, a method for solving the forward problem is 
used iteratively, employing an optimization strategy to vary 

the airfoil shape in some systematic way until (close to) the 
desired flow is obtained. The second class of methods, while 
generally much more computationally intensive than the 
first, offers more promise for handling difficult geometries 
and complex flow phenomena and takes advantage of exist- 
ing methods for solving the associated analysis problems. 

While our ultimate goal is to solve design problems for 
realistic, three-dimensional transonic aircraft, our short- 
term objective is to handle the simpler case of a two- 
dimensional transonic airfoil in inviscid flow. Even in such 
a simple case, little is apparently known about whether the 
analysis (much less the design) problem is well posed. 
Indeed, computational evidence [2] suggests that the 
analysis problem for transonic airfoil flows governed by the 
full-potential equation may possess more than one solution 
for given airfoil shape and free-stream conditions. In 
general, we might expect the design problem, being an 
inverse problem, to potentially suffer from ill-posedness. 
Whether this is the case is difficult to discern from the 
literature. 

The objective of this paper is to compare several 
optimization-based approaches for solving the design 
problem. To do so, we introduce a very simple model 
problem. The analysis problem for this model is well known 
and has been widely used for testing numerical methods for 
flows with shocks; it is the problem of determining the 
steady, one-dimensional flow of an inviscid fluid in a duct 
with a specified spatially-variable cross-sectional area. The 
design problem for the model is to determine the duct shape 
from the flow solution. One not-so-well-known fact about 
the duct flow model is that, under certain circumstances, the 
governing Euler equations can be reduced to a single 
ordinary differential equation. This fact and the way the 
duct geometry enters the problem, make it relatively easy to 
study and understand both the analysis and design 
problems for this simple model. Additionally, except for 
one-dimensionality, the flow phenomena exhibited by solu- 
tions of the model are quite similar to those in two-dimen- 
sional inviscid flow over an airfoil; this point is illustrated in 
Fig. 1. Thus, we may hope to gain some insight into the 
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FIG. 1. Analogy between (a) flow over a transonic airfoil and (b) flow 
in a duct. Of course, the flow in (a) is two-dimensional, but is assumed one- 
dimensional in (b). In either case, the velocity along the airfoil surface or 
along the duct length is qualitatively given in (c) 

nature of the airfoil design problem by studying the vastly 
simpler duct flow model. 

In Section 2 below, we show the reduction of the Euler 
equations to a single equation, describe how to solve it, and 
discuss the posedness of the analysis problem. Additionally, 
we introduce three discretizations of the analysis problem 
(possessing different degrees of continuity) that will be used 
later. We also introduce the design problem for this model 
and discuss its posedness. In Section 3 we present three dis- 
tinct optimization methods for solving the design problem, 
and discuss the relationships between them. In Section 4 we 
display some computational results using the three 
methods, and discuss the trade-offs between them. In 
Section 5 we present our conclusions. 

2. MODEL PROBLEM 

2.1. Continuous Analysis Problem 

The steady flow of an inviscid fluid in a duct of variable 
cross-sectional area A( 5) is governed by the Euler equations 

where 

-PA, 
0 

(1) 

5 is distance along the duct, p is density, u is velocity, 
E = e + u2/2, where e is specific internal energy, and p is 
pressure. Here, the subscript 5 means differentiation with 
respect to 5, and it is assumed that A(5) is a given, differen- 
tiable function. The pressure p is given by the equation of 
state for a perfect gas, p = (y - 1) pe, where y > 1 is the gas 
constant. (For air, y = 1.4.) We assume supersonic inflow at 
< = 0 and subsonic outflow at 5 = 1. Under these cir- 
cumstances, it is proper to specify three boundary condi- 
tions at 5 = 0 and one boundary condition at 5 = 1 [3]. 

We now show how, under these conditions, (1) can be 
reduced to a single ordinary differential equation in u. 
(See, e.g., [4].) The first and third components of (1) can be 
integrated to give 

puA = C, ye + u2/2 = H, 

where the constants C (the mass flow rate) and H (the total 
enthalpy) are evaluated at the inflow boundary < = 0. Using 
these relations to eliminate p and e from the second compo- 
nent of (1) gives, after some algebra, 

where 

f< + g=o, (2) 

and 7 = (y - l)/(y + 1) and R= 2HT are given constants. 
Equation (2) is fully equivalent to (1); no approximations 
have been made in the derivation. 

As an aside, we note that a useful model for testing 
schemes for nonlinear conservation laws can be obtaining 
by introducing an unphysical time dependence as 

u,+f(+g=o (3) 

which, though not equivalent to the time-dependent Euler 
equations, gives the same solution when a steady state is 
reached. (It also rejects falsely stabilized shocks in regions of 
decreasing duct area (A, < 0) that can be obtained as a 
solution of the time-independent equation (1) or (2) [S], 
and therefore it does capture some of the essence of the 
time-dependent Euler equations.) 

By applying standard results for hyperbolic conservation 
laws like (3), appropriately specialized for steady solutions, 
we can immediately state some facts about the behavior of 
the solutions of the steady flow equation (2). The flow is 
sonic (where f' vanishes) at u = u.+ = J??, supersonic for 
u>u*, and subsonic for u < u*. Shock jumps from uL (left 
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of the shock) to uR (right of the shock) satisfy the 
Rankine-Hugoniot jump relation fL = fR, or, t 

UL. UR = II. (4) 

The entropy condition states that such jumps are always 
from supersonic to subsonic, or 

UL>U*>UR. (5) 

Since the flow is supersonic at 5 = 0, f’ is positive and it is 
proper to specify one boundary condition, say u = uin there. 
Similarly, the flow is subsonic at the outflow boundary 
5 = 1, f' is negative, and it is proper to specify u = u,,~ there. 
For smooth solutions, (2) can be integrated in closed form 
to give 

Au(2H- u2)‘= K, (6) 

where r = l/(y - 1) and K is a constant. It can be shown that 
K, which is a function of entropy, increases across a shock. 

Now we pose our analysis problem, specified so that the 
solution contains a single shock at t,, is supersonic for 
0 < 5: < <,, and subsonic for 4, < 5 < 1. 

Analysis Problem. Given: 

I I I I *A 

A(O) NW A(l) 

FIG. 2. Solution algorithm for continuous analysis problem. 

Find: 

4th A,>0 0) 
Fig. 2. It remains to determine the shock location 5,. At the 
shock, A is the same from left to right, and (4) and (5) are 
satisfied. Defining z(u) = u(2H- u’)‘, the shock conditions 
are satisfied if 

ft+ g=o, 1 1 B 
away from shocks; 

uL.uR=Randu,>u,>u,, 
EZ(U&KZ ; =o. 

1 2 ( > 

u( 0 satisfying 

i 

at shocks; U’b) 
u( 5 = 0) = Uin > u* 
u((=l)=u,,,<u* 
and other technical conditions. 

Recalling that K, < K2, it can be shown that this equation 
has a unique solution under the stated conditions. 

The analysis problem (7) given above is a well-posed 
problem. Existence, uniqueness, and continuous depen- 
dence of the solution on the data follow from a detailed 
analysis of the algorithm given above. The technical conditions amount to certain relationships 

between Uin and u,,,~ that must hold in order for a solution 
to exist. Basically, given Uin (say), u,,~ must be larger than 
the value of u that would be obtained by assuming the shock 

2.2. Discrete Analysis Problem 

to be at < = 0 (with the flow being entirely subsonic for 
5 > 0), and less than or equal to the value of u that would be 
obtained by having the shock at < = 1 (with the flow being 
entirely supersonic for 5 < 1). 

Of course, in practice analysis problems cannot generally 
be solved analytically, but are instead approximated 
numerically. We therefore introduce three discretization 
methods for (2) to be used in solving (7); these methods 
differ in their degrees of continuity, which has an effect on 
the results obtained with the design optimization methods 
presented later. 

An algorithm for solving (7) is as follows: From A(0) and 
uin, determine K, , that value of K satisfying (6). Similarly, 
from A( 1) and u,,~, determine K,. The solution curves of u 
as a function of A as determined by (6) for the two values 
of K are shown in Fig. 2. Since A(<) is increasing for 
increasing r, we know that the solution must be as shown in J . 

Let the c-coordinate be discretized by a uniform, cell- 
centered grid with centers at cj= (j- 1/2)h, h = l/J, where 
J is the number of unknown erid values. Let u; renresent a 
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piecewise constant approximation to 1.4 on each grid cell. 
Then, a conservative difference scheme for (2) is given by 

Here the source term gj = g( uj, (LI,/A)~) and we assume 
that the duct shape A( 5) is given by a piecewise cubic spline 
described in the B-spline basis [6] with coefficients b, for 
m = 1,2, . . . . M and that A(O) and A(1) are fixed. (A,/A)j is 
obtained by evaluating the spline and its derivative at tj. 
The boundary conditions on u are u0 = ~(5 = 0) and 
u J+ I= 45 = 1). 

It remains to prescribe the fluxes&+ 1,2 as functions of uj 
and ur+,. Three such prescriptions, fG, fEo, and f*“, 
corresponding to the Godunov, Engquist-Osher, and 
artificial viscosity methods for numerically approximating 
hyperbolic conservation laws, are given in the Appendix. 
The Godunov fluxfG corresponds roughly to the first-order 
upwind scheme frequently used in computational 
aerodynamics and is a Co function of its arguments. The 
EngquisttOsher flux f E” is a slight perturbation offG that 
makes it C ‘. The artificial viscosity flux f”” is entirely dif- 
ferent, and is C *. The abilities of these schemes for sharply 
representing computed shock waves vary somewhat inver- 
sely to the degree of continuity, with the Godunov scheme 
having about one grid cell interior to a shock, the Eng- 
quist-Osher scheme two cells, and the artificial viscosity 
scheme many cells. Because continuity is an issue later, we 
will refer to these schemes as the Co, C ‘, and C Oc difference 
schemes, respectively. 

Once the discretization has been made, we are faced with 
solving a system of nonlinear algebraic equations. The 
system is 

Discrete Analysis Problem. 
Given: b,, m = 1, . . . . M (spline coefficients describing A(5)) 
Find: ui satisfying 

W(u) = 0. (9) 

Here W is the vector of discretized equations (8) for 
j= 1, 2, . ..) J and the boundary conditions on U. We will refer 
to the method for solving the analysis problem as the 
analysis code. The actual method employed in the analysis 
code may be Newton’s method (or a variant), some other 
iterative method (e.g., multigrid), or a time-marching 
scheme that approximates a time-dependent differential 
equation like (3). In any case, we note (as an aside) that 
there is generally no guarantee that the nonlinear system of 
equations approximating the well-posed problem (7) will 
have a unique solution; this point is illustrated in [4, 71. 

2.3. Continuous Design Problem 

We next turn our attention to posing the design (or 
inverse) problem: given the flow solution u(t), what is the 
duct geometry A(t)? In other words, we want to find that 
duct geometry A(t) such that the solution of (7) is some 
specified function 1;(t). It is not clear what one wants to 
specify about li. Obviously, it is possible to specify ti in such 
a way that no choice of A will yield it; for example, a 
specification of ti that does not satisfy (4) or (5) cannot be 
the solution of (7). This is, of course, precisely the situation 
faced in practice: it is generally impossible to specify a 
desired flow field that is certain to be realizable as the solu- 
tion of the forward problem for some geometry (not to men- 
tion some reasonable geometry). In this sense, any realistic 
design problem for our model is going to be improperly 
posed. If we were able to know that ti had to have a single 
shock satisfying the jump (4) and entropy (5) conditions 
and restricted our specifications of zi to functions that are 
realizable as solutions of (7), it would then be possible to 
show continuous dependence of A on 6. 

Another way to look at the design problem is to consider 
viewing (2) as an equation for A, given u. (This is the “non- 
optimization” view of the design problem referred to in the 
Introduction.) This equation is 

(yu - n/u) A, + (u + n/z& A = 0. (10) 

One difficulty that is immediately apparent is that the coef- 
ficients are discontinuous across a shock; this problem 
could be circumvented by including an appropriate viscous 
term in (2) that would slightly smear out the shock, and 
then, by taking the appropriate limit of viscosity, to zero. A 
more serious concern is that fact that (10) is a first-order 
linear equation, so that only one boundary condition on A 
can be specified. Assuming that A(0) is specified and (10) 
integrated in the positive x direction, there is no guarantee 
that the correct value A(1) would be achieved. In the 
context of the analogy suggested in Fig. 1, this would 
correspond to an airfoil that overlaps or does not close at 
the trailing edge. 

Given these difficulties, we are led naturally to consider 
quasisolutions [S]; that is, we want to solve 

Design Problem. Given: z?(t) 
Find: A(5), A, > 0, such that u(5) satisfies (7b) and 
llu([) - ti(t)l12 is minimized. 

Obviously there exists at least one solution to this 
problem; if the minimizer is unique, the problem is 
apparently well-posed. We have not established whether 
there is a unique solution to this design problem as posed 
above. We do note that this particular objective function 
puts a large premium on getting the shock located correctly 
and that precise location of shocks may not be as important 
in practical design problems for airfoils or aircraft. 

581/98/l-6 
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2.4. Discrete Design Problem 

We assume that a desired (or goal) velocity distribution 
ti, is given for each computational cell in the analysis 
problem. Then we have 

Discrete Design Problem. Given: iij, j = 1, . . . . J 
Find: b,, m = 1, 2, . . . . M (spline coefficients describing 

A(5)) such that (9) is satisfied and i C,!=, (u,- tij)’ is 
minimized. 

Later we will consider three variations on this problem 
that amount to leaving A(<) unconstrained, requiring 
A 5 > 0, and requiring A tr have the “correct” sign. The latter 
two translate into simple linear constraints on the B-spline 
coefficients b,. 

3. APPROACHES TO FORMULATING DESIGN 
PROBLEMS USING OPTIMIZATION 

Most of the recent literature on the aerodynamic design 
problem features specific optimization approaches or 
specific design problems. In this section we present a general 
view of the problem of optimal design. In particular, we 
consider three different methods for formulating the design 
problem as an optimization problem. General concepts for 
these approaches are illustrated by their application to the 
duct design problem discussed in Section 2. Except for these 
illustrations, this section is independent of the previous 
material. 

Two fundamental design issues are the choice of design 
variables and the selection of an objective function for the 
optimization. Often the design variables specify the shape of 
an object, such as an airfoil. For example, the duct design 
variables are the coefficients of the piecewise cubic splines 
specifying the duct area function A(c). In general, design 
variables can be any quantities that affect the analysis result. 
In addition, there are many choices for the optimization 
objective function. For example, the objective function for 
the duct problem is to come as close as possible to some 
specified velocity distribution. For airfoil design the objec- 
tive might be to minimize the drag of an airfoil over several 
operating conditions. 

In addition to the objective function there are usually 
design constraints. Some examples of design constraints are 
that an airfoil be sufficiently thick to ensure structural 
integrity, or that the pressure in a given flow region not 
exceed a specified level. In the duct design problem we will, 
for example, sometimes require that the duct area be 
monotonically increasing. 

Though selection of appropriate design objective and 
constraint functions are important, the correct choices are 
problem-dependent and little general guidance can be given. 
There are, however, some issues regarding the methods 
presented in Sections 3.1-3.4 that are more generic. These 

include efficiency, optimization trial designs that cannot be 
solved by the analysis code, and potential discontinuities in 
optimization problem derivatives due to analysis techniques 
such as shock-handling schemes and grid refinement. 
Indeed, one optimization difficulty that affects all of the 
methods discussed here is the “mismatch” in the continuity 
requirements of analysis schemes based on Newton’s 
method and those for efficient optimization algorithms. 
That is, convergence results for Newton-based analysis 
schemes require C ’ continuity of the discretized differential 
equations (though this is infrequently achieved in practice), 
whereas efficient optimization codes require C2 continuity 
of the objective and constraint functions with respect to the 
design variables. (See, e.g., [ 91 for a discussion of these con- 
tinuity requirements.) This mismatch can adversely affect 
the optimization process because the design problem cannot 
have a higher degree of continuity than the associated 
analysis problem. 

3.1. The Black-Box Method 

The black-box method is the most direct approach to 
optimal design. In the black-box method the analysis code 
is repeatedly invoked as the design variables are altered by 
the optimization code. Since the analysis code is inde- 
pendent of the optimization code, it may be treated as a 
black box. 

If the design is characterized by a vector xg of n, design 
variables then the optimal design problem is given by 

minimize f (x,), 

xD~RnD 

subject to C(x,) > 0, 

(11) 

where f (xD) is the objective function’ and C(x,) is a vector 
of m, constraint functions. In the black-box method, each 
evaluation off (xD) requires a solution by the analysis code. 

Often, the function f will be formulated in terms offlow 
variables xF. The flow variables are the physical variables on 
the discretization grid, such as velocities or pressures. For 
example, the objective for the duct design problem is a func- 
tion of velocities on the grid cells. In this situation, f is 
dependent on the design variables xD in an indirect manner. 
That is, the variables xD are linked to the flow variables xF 
via the differential equations or the discretization of these 
equations, since the flow variables will change when (for 
example) the geometry is altered. In general, f will have 
both a direct dependence on xD and an indirect dependence 
on xD, due to the dependence of xF on xD. Thus, one could 
consider the objective function to be f (x,(x,), xD). The 

’ Note that the typewriter font f is used for the objective function to 
distinguish it from the flux functionfintroduced in Section 1. 
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term xF(xD) indicates that, given xD, the value of xF is 
obtained by solving an analysis problem. 

The constraints C may also have an indirect dependence 
on the design variables. However, they will often be shape 
constraints formulated directly in terms of xD. For example, 
one version of the duct design problem requires that the 
duct area increase monotonically. This constraint can be 
formulated in terms of the coefficients of the piecewise 
polynomials that define the area function A(5). 

One of the drawbacks of the black-box approach is high 
computational cost. Typically, efficient optimization codes 
(see, e.g., [lo]) for solving (11) require computation of V, f 
and V,C, the gradients of the objective funcion and con- 
straints with respect to the design variables. Computing 
these derivatives by one-sided finite differences requires 
solving n, analysis problems, where each problem 
corresponds to a perturbation of a different component of 
xD. One mitigating factor is that solving these perturbed 
analysis problems should be considerably cheaper than 
solving arbitrary problems, at least when the analysis code 
employs an iterative solver. This is due to the availability of 
the solution of the “nearby” problem at the nominal value 
of xD as a starting guess for the iteration at the perturbed 
value of xD. In the next section we show that the first 
derivatives for the design problem can often be computed by 
another method for considerably less cost than solving n, 
analysis problems. 

Another difficulty with the black-box approach is that the 
analysis process may fail for some values of xD generated by 
the optimizer. The failure may be due to lack of robustness 
of the analysis code or to the design having no solution in 
the domain of the analysis model (e.g., a physically 
unrealistic geometry, or one that has no steady-state flow 
solution). One approach to handling this problem is to 
impose constraints that prohibit designs that have no 
analysis solution. For example, an airfoil could be con- 
strained to exclude shapes with sharp indentations. Another 
approach is to assign very large objective function values to 
unanalyzable designs so that they are not selected as 
improved designs. A minimum requirement for the black- 
box approach is the existence of an analysis solution for the 
initial design input to the optimizer. 

An advantage of the black-box approach is that the 
analysis code can be used essentially without modification. 
Thus, there is no need to tamper with complicated dis- 
cretization schemes such as those used in most advanced 
computational aerodynamics codes. 

3.2. Implicit Gradient for the Black-Box Scheme 

In this section we describe a method, based on the 
implicit function theorem, for “cheaply” computing 
derivatives required in the optimization. Similar methods 
are mentioned in Ref. [ 111 and the citations therein. For 

simplicity, the unconstrained version of (11) is considered. 
However, the results apply to the constrained problem as 
well. 

Assume that the analysis problem has been discretized so 
that an analysis consists of solving a system of nonlinear 
equations. In this case function evaluations for the black- 
box method are computed as follows. Given a design 
specified by xD, the analysis code solves W(x,) = 0, where 
xF is the vector of ilF flow variables and W is a vector of nF 
nonlinear equations. Since the analysis problem is an 
implicit function of xD it can be viewed as solving 

wx,, XLJ) = 0 (12) 

for xF, given a design specified by xD. 
Suppose that xF and xD are considered as subsets of the 

n,+ n, vector x given by 

x=( XF I x0); (13) 

the Jacobian (first-derivative) matrix of (12) is then 

(14) 

where J is nFx (n,+ n,), J, is the nFx nF Jacobian with 
respect to the flow variables, and J, is the nF x n, Jacobian 
with respect to the design variables. (The partitioned view of 
the Jacobian implies nF $ n D; this will usually be the case.) 
Note that J, is often available in analysis codes, especially 
those based on Newton’s method and variants. 

Consider the function P(x,, x,), where “f is the same as 
the black-box method objective function f, except that xF 
and xD are considered to be independent of each other. The 
function “f (x,, xD) is then equivalent to the black-box 
method objective function f (x,(x,), xD) only when (12) is 
satisfied. Computing gradients of ? is considerably simpler 
than computing gradients of f. This is due to the fact that 
the partial derivatives of 7 with respect to variables in xD 
can be computed with the assumption that xF is fixed. In 
contrast, the partial derivatives of f with respect to 
variables in xD must account for the fact that xF is a 
function of xD. 

Usually V,“f and V,?, the gradients of ?’ with respect to 
the flow variables and the design variables, respectively, are 
available as analytic expressions or can easily be computed 
by finite differences. For example, the discrete design 
problem for duct flow has (V, ??(x))~ = u, - ti, and 
V, ?? (x) = 0. However, the black-box method requires V, f, 
the gradient of f with respect to the design variables xD. 
Theorem 3.1 provides an efficient way to compute V, f, 
given V,F and V, ?‘. 
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THEOREM (3.1). If w(X,, XD) = 0 and W(xF, xD) is C1 
in a neighborhood of X = (XF, XD), with JF nonsingular at x 
then 

v,f(X,)=Vo?i(X)-J~JF~F?)(SC). 

(Here, superscript T indicates transpose.) 

(15) 

Proof The implicit function theorem (see, e.g., [ 121) 
guarantees the existence of a C’ (unique, locally one-to- 
one) function mapping xD to xF in a neighborhood of X0, 
such that W(x,, xD)= 0. Suppose xD = X0 + dx, and, 
correspondingly, xF = XF + Ax,. The Taylor series for 
W(x,, x,) expanded about X is 

dependent code where the steady-state solution is found by 
stepping through time. The implicit gradient scheme can 
still be used in this case, provided that J, can be computed 
efficiently using sparse finite differences (see, e.g., [ 13) ). The 
sparse difference approach only requires that the analysis 
code provide the values of W(xF, xD) when values of xF and 
xD are input; most codes, if not already in this form, can be 
easily modified to produce W. 

W(xF, xD) = 0 = W(X,, xD) + J, Ax, 

+J, Ax,+O(llAx112). (16) 

In general, computing implicit gradients is much cheaper 
than computing gradients by finite differences. This is 
because the finite difference gradient computation requires 
the solution of n, analysis problems. In contrast, computing 
the gradient implicitly requires n, evaluations of the flow 
equations W(x,, xD) and one solve of a linear system with 
the matrix J’, (or n, solves with JF). A disadvantage of the 
implicit scheme is that some (perhaps substantial) modifica- 
tion of the analysis code is required. 

Since W(X,, XD) = 0, Eq. (16) yields 3.3. The All-at-Once Method 

Ax,= -J,‘J,dx,+O(~ld~~~~). (17) 

Since the mapping from xD to xF is locally one-to-one, 
Ax-0 as Ax, -+ 0. Thus, Eq. (17) indicates that at X the 
partial derivative of component i of xF with respect to com- 
ponent j of xD is the (i, j) component of M = -J; ’ J,, 
where M is an nF x n, matrix. Accounting for changes in f 
due directly to changes in xD and, via the chain rule, to the 
corresponding changes in xF gives 

In deriving the implicit gradient method the objective 
function “f and the discretized differential equations W were 
considered to be functions of the independent sets of 
variables xD and x~. Thus, one could consider a design 
method where both xD and xF are treated as optimization 
variables and the flow equations W(x,, xD) = 0 are treated 
as equality constraints. This all-at-once method can be 
described formally as 

minimize “f(x,, x,), 

which is equivalent to (15). a 

The following algorithm could be used for computing 

x E R(V+W) 

subject to C(xF, xD) > 0, 

W(x,, XD) = 0, 

V, f using Eq. (15). First compute V,“f and V, “f, solve 
J’, y = V,? for y and then compute V, f =V,“f - Jz y. 
Note that, if it is difIicult to solve linear systems with the 
matrix Jz, the linear algebra in (15) can be rearranged as 
(J;‘J,)‘V,“f(X), requiring n, solves with J,. 

where x= (x,, xD) and the vector C consists of the design 
constraints as in ( 11). An iteration of the optimization now 
involves simultaneous modification of both xF and xD. A 
similar approach to the design problem is described in [ 141. 

Thus, computation of V,f by the implicit method 
requires computing J, and solving the linear system 
Jz y = V,?‘. Computation of JD by forward finite differences 
requires n, evaluations of W(x,, xD). Note that evaluation 
of W(x,, xD) (sometimes referred to as “computing the 
residuals”) is usually significantly cheaper than solving 
W(xF, xD) = 0, i.e., solving the analysis problem. Solving 
JE y = V,!? is trivial if the analysis code computes a fac- 
torization of J,. However, if an iterative method such as 
pre-conditioned conjugate gradient is used in the analysis 
code, then the iterative solver must be adapted to solve the 
transposed system. 

An advantage of the all-at-once method over the black- 
box method is the probability of requiring considerably 
fewer equivalent solutions of the large discretized system 
W(x) = 0. This is because the black-box method requires 
the solution of W(x,) = 0 for each change in xD. However, 
in the all-at-once method, each change in xD requires the 
computational equivalent of only one step of a Newton 
solver for W(x,) = 0. 

Some analysis codes do not provide JF or an iterative 
solver for systems involving JF; an example is a time- 

Another advantage of the all-at-once approach is that it 
does not require the existence of solutions to the analysis 
problem for all values of the design variables generated in 
the course of the optimization. All that is required is that the 
residual of the system W(x,, xD) be computable for the 
values of xF and xD generated by the optimizer. However, 

(18) 
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by definition, the analysis problem must be analyzable at 
the optimal value for x,. 

A big disadvantage of the all-at-once method is that the 
optimization code is not isolated from the analysis code. 
That is, since the optimization code must simultaneously 
change the analysis and design variables, it must contain all 
the specialized software required for an analysis. In par- 
ticular, even if the number of design variables is small, the 
optimizer must include code for handling large analysis 
problems; for example, sparse matrix factorization codes or 
codes that compute preconditioners and conjugate gradient 
iterations. Consequently, the all-at-once optimization code 
may have to be modified significantly for application to 
each new analysis problem. 

Another disadvantage of the all-at-once method com- 
pared to the black-box method was discovered in tests on 
the duct design problem: the all-at-once method is much 
more susceptible to derivative discontinuities arising from 
finite difference schemes designed to sharply approximate 
shocks. These discontinuities are caused by certain 
“switches” in the difference schemes that trigger changes in 
the difference formulas based on the computed flow solu- 
tion. The last of the “if’ tests associated with the Godunov 
scheme, shown in Appendix A, typifies such low-continuity 
switches. Often, the activation of these switches is associated 
with the movement of shocks. 

The black-box optimization method “sees” only con- 
verged analysis solutions, and thus does not experience the 
difference formula switches that occur in the course of 
converging an analysis solution. It does, however, indirectly 
experience the discontinuities caused by these switches 
when shocks move from one grid cell to the next between 
successive converged analysis solutions. In contrast, the 
all-at-once optimization method works directly with the 
difference formulas, since they define equality constraints 
for the optimization problem. Thus, this method frequently 
encounters the discontinuities due to the switches as the 
optimizer traverses (x,, x,)-space. 

3.4. The Variational Approach 

To facilitate the description of the variational approach 
to optimal design, optimality conditions for the finite- 
dimensional, discretized problem are discussed first. 
Consider the all-at-once problem (18) with no design con- 
straints, i.e., no C(x,, xg) 3 0 constraints. The Lagrangian, 
L(x,, x,,, A), for (18) is then given by 

L(x,, xg, A) = P(x,, xg) - WT(X,, XD)Iz) (19) 

where I is a vector of nF Lagrange multipliers. The first- 
order optimality condition for (18) is 

VL(x,, xg, 1) = 0. (20) 

In formulating variational or optimal control (see, e.g., 
[ 151) methods for the design problem one derives rela- 
tionships corresponding to (19) and (20) in an inlinite- 
dimensional space (i.e., for the continuous problem). In this 
approach, the vectors xF and xg are replaced by continuous 
variables, the discrete equations W(x,, xD) = 0 are replaced 
by the original differential equation, sums in the objective 
function are replaced by integrals over the domain and the 
Lagrange multiplier vector is replaced by an adjoint 
function. The adjoint function is specified by an operator 
equation, the adjoint equation, which is derived by imposing 
optimality conditions or descent conditions on the gradient 
of the infinite-dimensional “Lagrangian.” Once the adjoint 
has been derived, both the original differential equation and 
the adjoint are discretized and used in an optimization 
procedure. 

The variational approach to design has been described by 
several authors, and has been applied in many disciplines 
for a long time. (See, e.g., [16, 171 for applications to 
petroleum reservoir problems.) In aerodynamics, Miele 
[lS] describes variational methods based on satisfying 
optimality conditions and Jameson [ 191 describes a varia- 
tional method for finding an infinite-dimensional gradient 
of the design problem. Using Jameson’s approach, the 
gradient can be computed for the cost of solving the original 
analysis problem and the adjoint problem. This can be 
significantly cheaper than the n, analyses required for the 
black-box method using finite difference gradient computa- 
tions. 

Detailed derivations of variational methods for certain 
problem classes are given in the references. Here, a result is 
presented that shows that a particular variational method 
(one representative of those used in practice) applied to the 
discretized problem is equivalent to the black-box method 
with implicit gradients. 

Note that in the “variational” method described below 
the discretization of the problem occurs prior to derivation 
of the optimality formulas. In contrast, in the control 
theoretic methods (e.g., [ 191) optimality conditions are 
derived prior to discretizing the problem. 

Given the assumptions of Theorem 3.1, consider the lirst- 
order optimality conditions for the discretized design 
problem, given by (20). Let V,L, V,L, and V,L, respec- 
tively denote the gradient of the Lagrangian with respect to 
the Lagrange multipliers, the flow variables, and the design 
variables. The optimality conditions (20) are then given by 

vj,L(X,,X,,~)="~w(X,,X,)=O (21) 

v,L(x,, xD, n)=o=+.P(X)-.I$&0 (22) 

vD L(x,, xD> q=o*vD”f(x)-J;I=o, (23) 

Equation (21) requires that the discretized system of equa- 
tions be satisfied. 



82 FRANK AND SHUBIN 

Conditions (21)-(23) constitute a nonlinear system of 
(2 * nF) + n, equations in as many unknowns. Algorithm A 
is an iterative method for solving this system; it is the same 
algorithm that would be obtained by applying optimal con- 
trol or variational techniques to the “discrete Lagrangian” 
(19) rather than to its continuous analogue (see, e.g., [20]). 

ALGORITHM A. Variational Method for the Discretized 
Design Problem. 
Step 1. Given a value for the design variables xg, solve (21) 

for xF. 
Step 2. Compute V,“f (x) and J,. Then solve (22) for 1. 
Step 3. Compute V,?’ and JD. Compute V,L(x,, xg, A) 

using (23). If VDL(xF, xg, A) = 0 then STOP, the 
first-order optimality conditions are satisfied. 
Otherwise, use V,L(x,, xg, A) to obtain a new 
value for xg which reduces the optimization objec- 
tive function. GO TO Step 1. 

We note that in Step 3, the new value for xg does not 
necessarily reduce the residual in (23), but instead seeks to 
directly reduce the objective function f. However, it will be 
shown below that at a minimizer for f, (23) will be satisfied. 

The relation between Algorithm A and the black-box 
method using implicit gradients is indicated in Proposi- 
tion 3.2. 

PROPOSITION (3.2). The variational method given by 
Algorithm A is equivalent to the black-box method using 
implicit gradients. 

Proof: In the black-box method each new value of xg 
requires solving an analysis problem for xF, just as in Step 1 
of Algorithm A. In Step 2 of Algorithm A, solving (22) for I 
yields 2 = J;‘V,? (x). Using (15) and this value for 1, in 
(23) gives 

vD L(x,, xD~ n)=vD”f(X)-JJTDJF=vF”f(X) 

=V,f (XD). (24) 

At each iteration of an optimization code implementing the 
black-box method, a new value for xD is computed which 
reduces the objective function. These values for xg are 
obtained by computing descent directions for the objective 
function, where descent directions are vectors that have 
negative inner products with V,f (xD). Equation (24) 
indicates that this technique is consistent with step 3 of 
Algorithm A. The black-box optimization method ter- 
minates at an optimal solution when V, f (xg) = 0, which is 
equivalent to the termination condition in step 3 of 
Algorithm A. 1 

Proposition 3.2 provides insight into comparing the 
black-box method with implicit gradients to the variational 
scheme of Jameson. To compute a gradient for the design 
problem, both methods require solution of the analysis 
Droblem. Additionallv. the imnlicit gradient scheme 

requires solving the linear system J’, y =VF?, whereas 
Jameson’s method requires solving (a discretization of) the 
adjoint equations. 

A potential disadvantage of Jameson’s approach is that 
the adjoint equations may be difficult to derive for complex 
design problems. Another potential drawback arises from 
deriving the gradient formula prior to discretizing the 
problem. The discretized adjoint problem may not be dis- 
cretely adjoint to the discretized analysis problem. This mis- 
match could cause the computed gradient of the discretized 
design problem to be inaccurate. 

3.5. A Solution Method for Nonlinear Optimization 
Problems 

In Sections 3.1-3.4 we discussed posing the design 
problem as a nonlinear optimization problem. To provide 
insight into the optimization method used in our testing, we 
now discuss the sequential quadratic programming (SQP) 
method. A detailed description of the SQP method appears 
in [lo]. 

The SQP method is an iterative method where at each 
iterate x, a step is taken based on solving a local model of 
the problem. The objective function for the model problem 
is a quadratic approximation to the Lagrangian at x and the 
model constraints are a linearization of the constraints at x. 
That is, at each iteration the SQP method computes the step 
p from x that solves the quadratic program (QP) given by 

minimize g’p + 4 p’Qp, 

PER” 

subject to Jp 2 0, 

(25) 

where the n vector g is the gradient of the Lagrangian, the 
n x n matrix Q is an approximation of the Hessian (second- 
derivative) matrix of the Lagrangian and the m x n matrix J 
represents the linearized constraints. 

Solving the QP is also an iterative process, where at each 
QP iteration there is a different actioe set of constraints. The 
active set consists of equality constraints and exactly 
satisfied inequalities. Each QP iteration requires solving the 
equality constrained problem (EP) given by 

minimize gTp + i p’Qp, 

PER” (26) 

subject to -fp = 0, 

where the t x n, t d n, matrix j represents the active set of 
linearized constraints. 

Solving EP usually requires solving linear systems 
involving g and the projection of Q into the null space of j. 
These linear systems are modified each time an inequality is 
added to or deleted from the active set. 

The direction to the solution of the OP subnroblem is 



used to find an improved iterate for the original problem. If 
the new iterate is not optimal, a new QP subproblem is 
formed and solved. 

One advantage of the SQP method is that QP solver 
iterations only involve evaluations of the QP model. No 
extra evaluations of the original objective function and 
constraints are required. This is important in the black-box 
approach because each evaluation of the objective function 
requires solving an analysis problem. A disadvantage of the 
SQP method is that only the linearized constraints are 
satisfied at each major iteration. The nonlinear constraints 
are not guaranteed to be satisfied until an optimal point is 
found. For example, when using an SQP code in conjunc- 
tion with the all-at-once method, the discretized flow 
equations may not be satisfied until an optimal point is 
found. 

4. NUMERICAL RESULTS 

In this section we present numerical results obtained by 
applying the design methods discussed in Section 3 to the 
discrete problem for duct flow described in Section 2. The 
testing was done on a Sun SPARC workstation. 

The optimization code used was NPSOL version 2.0, a 
product of the Systems Optimization Laboratory, Stanford 
University. NPSOL is an implementation of the SQP 
method described in Section 3.5. NPSOL 2.0 computes a 
secant approximation to the Hessian (second derivative) 
matrix and the user supplies first derivatives. Forward finite 
differences were used to compute first derivatives for the 
black-box (finite difference gradient) method. NPSOL is 
intended for small to moderate size problems in that it treats 
all matrices as dense. This is acceptable for the duct design 
problem, since the total of design and flow variables never 
exceeded 50. 

The design variables (called xD in Section 3) were the 
B-spline coefficients describing the duct geometry A(<). 
The two end values of A were fixed at A(0) = 1.05 and 
A( 1) = 1.745. The tests were run for the case of two design 
variables (no = 2) and 10 design variables (no = 10). The 
linear duct shown in Fig. 3a was the initial design for each 
run. 

Velocities along the duct were the flow variables (called 
xF in Section 3) for the duct design problem. We took 
J = 40 grid cells, so there were nF = 40 flow variables. The 
boundary conditions were u0 = 1.299 and u4, = 0.506. The 
flow variables resulting from an analysis of the linear duct, 
using the Co difference scheme, appear as crosses in Fig. 3b. 

In the black-box method optimization runs Newton’s 
method was used for the analyses and the runs were “warm 
started.” That is, the initial values for the flow velocities 
were taken from the preceding analysis. The initial velocity 
profile for the first analysis in an optimization run was a 
linear profile connecting the boundary conditions. 
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FIG. 3. (a) Area profile, linear duct using Co scheme. (b)Velocity 
profile, linear duct, using Co scheme. 

The velocities tij used as the design goal were the evalua- 
tions on the computational grid of the analytic solution for 
a duct with a cross-sectional area given by a sinusoidal 
perturbation of the linear duct. This velocity profile is the 
continuous curve in Fig. 3b. 

Figure 4 shows the optimal solutions for the n, = 2 duct 
design problem using the Co, C’, and C” difference 

TABLE 1 

Test Results for n, = 2, No Constraints 

Problem Difference Opt. No. No. No. equiv. Time 
formulation scheme found? itrns fevals Newton steps (s) 

Bbox (fd grad) co yes 10 16 181 11.7 
Bbox (imp1 grad) Co yes 11 20 166 10.4 
All-at-once Co Im-- 

Bbox (fd grad) 
Bbox (imp1 grad) 
All-at-once 

C’ 
C’ 
C’ 

yes 7 13 156 9.4 
yes 1 13 108 6.9 
no - - 

Bbox (fd grad) 
Bbox (imp1 grad) 
All-at-once 

C” 
C” 
C” 

yes 9 16 187 12.6 
yes 9 16 131 9.2 
yes 6 7 6 6.7 
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FIG. 4. (a) Area profiles, optimal ducts with two design variables. (b) Velocity profile, optimal duct with two design variables, using Co scheme. 
(c) Velocity profile, optimal duct with two design variables, using C’ scheme. (d) Velocity profile, optimal duct with two design variables, using C” 
scheme. 

schemes. The optimal ducts, shown in Fig. 4a, are only The following notation is used in Tables I-IV. “Bbox (fd 
slightly different. However, the optimal lit to the velocity grad)” and “Bbox (imp1 grad),” respectively, denote the 
design goal (Figs. 4b-d) clearly improves as the continuity black-box scheme with finite difference gradients and 
of the difference scheme is decreased. This is not surprising gradients computed using the implicit method. “Opt. 
since the design goal has a maximally sharp shock. Found?’ indicates whether or not the optimization code 

Table I gives the numerical results for tests with n, = 2. converged to the optimal solution. If the optimization code 

TABLE II 

Test Results for no = 10, No Constraints 

Problem Difference Opt. No. No. No. equiv. Time 
formulation scheme found? itrns fevals Newton steps (s) 

Bbox (fd grad) co yes 31 48 1216 105.4 
Bbox (imp1 grad) Co yes 31 48 317 35.9 
All-at-once Co yes 19 30 19 32.3 

TABLE III 

Test Results for no = 10, First Derivative Constraints 

Problem Difference Opt. No. No. No. equiv. Time 
formulation scheme found? itrns fevals Newton steps (s) 

Bbox (fd grad) Co yes 55 85 2046 175.7 
Bbox (imp1 grad) Co yes 58 89 418 55.8 
All-at-once Co Im-- 

Bbox (fd grad) C’ yes 30 46 1143 97.1 Bbox (fd grad) C’ yes 18 28 675 43.6 
Bbox (imp1 grad) C’ yes 28 45 315 27.2 Bbox (imp1 grad) C’ yes 19 28 133 13.7 
All-at-once CL yes 19 31 19 33.8 All-at-once CL yes 93 146 246 150.1 

Bbox (fd grad) 
Bbox (imp1 grad) 
All-at-once 

C” 
C” 
C” 

yes 
yes 
yes 

28 40 998 68.9 Bbox (fd grad) C” yes 16 23 544 36.7 
29 42 257 23.3 Bbox (imp1 grad) C rr yes 17 24 108 12.2 
11 12 11 18.2 All-at-once C” yes 7 10 32 13.5 
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TABLE IV TABLE VI 

Test Results for no = 10, First and 

Second Derivative Constraints 

Equivalent Newton Steps for Bbox 
(imp1 grad) vs All-at-once Method 

Problem 
formulation 

Difference Opt. No. No. No. equiv. Time 
scheme found? itrns fevals Newton steps (s) “0 Constraints 

Avg. ratio of equivalent Newton steps for 
Bbox (imp1 grad) over all-at-once method 

Bbox (fd grad) 
;: 

yes 41 64 1557 134.2 
Bbox (imp1 grad) yes 315 
All-at-once co lm”” - 

41.4 

Bbox (fd grad) 
Bbox (imp1 grad) 
All-at-once 

;: 

C’ 

yes 18 30 713 46.3 
yes 16 26 122 13.4 

yes 121 202 463 214.2 

2 none 21.8 
10 none 18.9 
10 1st Deriv. 2.2 
10 1st and 1.4 

2nd Deriv. 

Bbox (fd grad) C” yes 15 23 580 39.3 
Bbox (imp1 grad) C J3 yes 15 23 141 13.9 
All-at-once C” yes 14 22 55 24.7 

would be obtained by solely considering CPU times on a 
small problem. 

converged to a local minimizer that is not optimal then “lm” 
appears in the “Opt. Found?’ column. All problem formula- 
tions with “yes” in this column, for a given difference 
scheme, converged to the same solution. The number of 
optimization iterations, number of objective function 
evaluations reported by NPSOL and CPU time are 
indicated in the “No. itrns,” “No. fevals,” and “Time” 
columns, respectively. The number of gradient evaluations 
is approximately the same as the number of function evalua- 
tions. 

The test results in Table I indicate that the black-box 
scheme with implicit gradients is always more efficient than 
the black-box scheme with finite difference gradients. In 
addition, Table I indicates that the all-at-once scheme is less 
robust than the black-box schemes. As indicated in 
Section 3.3, the all-at-once scheme is much more susceptible 
to difficulties due to low-continuity finite difference schemes. 
However, when the all-at-once method does work, as in the 
C” case, it is much more efficient than the black-box 
schemes. This is particularly true in terms of equivalent 
Newton steps. 

The “No. equiv. Newton steps” column indicates the 
number of times the optimization method requires a com- 
putation that is equivalent to the work of a Newton step on 
the discretized analysis problem, solve W(x,) = 0. This data 
is included in Tables I-IV because this work will dominate 
the computation cost for large problems. Inclusion of 
equivalent Newton step results is intended to provide a 
more meaningful basis for performance evaluation than 

Figure 5 shows the optimal solutions for the n, = 10 duct 
design problem using the Co, C ‘, and C” difference 
schemes. The n, = 10 case allows enough degrees of 
freedom for “wavy” ducts to be generated in the optimiza- 
tion process. It is clear that a strangely shaped optimal duct 
results from the C” scheme that allows a “smearing” of the 
shock. 

TABLE V 

Efficiency Comparison of Versions of the Black-box Method 

(in Terms of Ratios of Equivalent Newton Steps) 

To make the optimal duct design more physically 
reasonable, design constraints were imposed. Figure 6 
shows the n, = 10 optimal solutions when first-derivative 
positivity (monotonicity) constraints are imposed for three 
discretization schemes. The optimal duct for the Co scheme 
is unaffected by the monotonicity constraint. The 
monotonicity constraint makes the optimal duct for the C’ 
scheme indistinguishable from that for the Co scheme. The 

Comparison 

Avg. advantage of Bbox (imp1 grad) 
over Bbox (fd grad); both 
using warm-start analyses 

n,=2 n,=lO 

1.3 3.9 
TABLE VII 

Summary Comparison of Design Problem Formulations 

Avg. advantage of using 
warm-start analyses 
in Bbox (fd grad) 

2.8 4.7 Problem 
formulation 

Independence of 
Computational optimization and 

Robustness cost analysis codes 

Avg. advantage of using 
warm-start analyses 
in Bbox (imp1 grad) 

1.6 2.1 
Bbox (fd grad) High High High 
Bbox (imp1 grad) High Medium Medium 
All-at-once Low Low Low 
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optimal duct for the C” scheme with monotonicity 
constraints is considerably smoother than the optimal 
unconstrained duct, but it is still somewhat ugly. 

In addition to the monotonicity constraints, second- 
derivative constraints were imposed that required the duct 
curvature to have the same sign as the optimal n, = 2 ducts 
shown in Fig. 4. Figure 7 shows the n, = 10 optimal 
solutions when both types of constraints are imposed for the 
three difference schemes. The second-derivative constraint 
has little effect on the optimal Co and C’ scheme ducts. 
However, the new constraint results in an acceptable 
optimal design for the Cm scheme. 

Tables II-IV, respectively, give the numerical results 
for the n,= 10 design problem with no constraints, 
monotonicity constraints, and both monotonicity and 
curvature constraints. As in the n, = 2 case, the black-box 
scheme using implicit gradients is always more efficient than 
the black-box scheme with finite-difference gradients. The 
results are summarized in the first row of Table V. The 
advantage of using the implicit gradient scheme increases 
as the number of design variables increases. This is to be 

expected since n, is the number of analyses required to 
compute the gradient by one-sided finite differences, 
whereas ~~ is only a secondary factor in the computation 
cost for the implicit gradient method. 

Table V also summarizes the efficiency gained in both 
black-box methods by using warm-start analyses. Not sur- 
prisingly, since finite difference gradients are computed by 
analyzing slightly modified problems, the black-box method 
with finite difference gradients obtains more benefit from 
warm starts than the black-box method with implicit 
gradients. 

As in the n, = 2 case, Tables II-IV indicate that the all- 
at-once method is less robust than the black-box methods 
but, when it works, it is usually more efficient. Table VI 
compares the number of equivalent Newton steps required 
for the all-at-once method with those required for the most 
efficient black-box method, on problems where they both 
computed the optimal design. The all-at-once method has a 
significant advantage in the unconstrained case. However, 
adding design constraints reduces this advantage. A partial 
explanation of this trend is revealed by the discussion of 
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FIG. 5. (a) Area profiles, optimal ducts with 10 design variables, no design constraints. (b) Velocity profile, optimal duct with 10 design variables, 
no design constraints, using Co scheme. (c) Velocity profile, optimal duct with 10 design variables, no design constraints, using C’ scheme. (d) Velocity 
profile, optimal duct with 10 design variables, no design constraints, using Cm scheme. 
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FIG. 6. (a) Area profiles, optimal ducts with 10 design variables, first derivative constraints. (b) Velocity profile, optima1 duct with 10 design 
variables, first derivative constraints, using Co scheme. (c) Velocity profile, optima1 duct with 10 design variables, first derivative constraints, using C’ 
scheme, (d) Velocity profile, optimal duct with 10 design variables, first derivative constraints, using Cm scheme. 

SQP methods in Section 3.5. That is, the all-at-once method 
works with a much larger QP than the black-box methods. 
Thus, when constraint inequalities enter and leave the active 
set, the all-at-once method must perform linear computa- 
tions on much larger problems than the black-box methods. 
Despite this disadvantage, the all-at-once method always 
required many fewer equivalent Newton steps on C” 
scheme problems than the black-box methods. 

Based on the duct design tests, several summary 
statements can be made. A general trend is that increasing 
the continuity of the shock scheme reduces the difficulty in 
the optimization runs, but increases the degree to which 
the design must be constrained. Summary observations 
comparing the three problem formulations are given in 
Table VII. They are compared based on robustness, com- 
putational cost, and the extent to which they allow 
independence of the optimization and analysis codes. 
(The two black-box methods tied for first in the robustness 
category.) 

The test results indicate the desirability of improving the 

robustness of the all-at-once method so that its efficiency 
advantage can be exploited. One way to do this is to give the 
all-at-once method a very good initial estimate of the 
solution for both the flow and design variables. This idea 
was tested on the n, = 10 design problem, using the Co 
difference scheme, with both monotonicity and curvature 
design constraints. The initial flow and design variables 
were taken from the optimal solution computed by the all- 
at-once method on the Coo version of this problem. The all- 
at-once method then converged to the optimal solution of 
the Co problem at the cost of 143 equivalent Newton steps. 
The total cost for both the Coo initial solution and the final 
run on the Co problem was 198 equivalent Newton steps. 
This is an improvement over the 315 equivalent Newton 
steps required by the best black-box method. 

Finally, we note that tests (not reported here) indicate 
that, as suggested by examination of the continuous design 
problem in Section 2, the spline coefficients obtained in 
solving the discrete design problem depend continuously on 
the data iij. 
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FIG. 7. (a) Area profiles, optimal ducts with 10 design variables, first and second derivative constraints. (b) Velocity profile, optimal duct with 10 
design variables, first and second derivative constraints, using Co scheme. (c) Velocity profile, optimal duct with 10 design variables, first and second 
derivative constraints, using C ’ scheme. (d) Velocity profile, optimal duct with 10 design variables, first and second derivative constraints, using Cm 
scheme. 

5. CONCLUSIONS 

We have presented three methods for formulating design 
problems as optimization problems. The first is the black- 
box method where the optimization code is completely 
separated from the analysis code, and the optimization code 
repeatedly invokes the analysis code to provide values of the 
flow variables that are used to evaluate the objective func- 
tion of the optimization. Most of these invocations of the 
analysis code are made by the optimization code in order to 
evaluate finite difference approximations to the gradients of 
the objective function (and constraints) with respect to the 
design variables. In general, this is very costly. We therefore 
presented a modification of the black-box method where 
these gradients are found by an algorithm based on the 
implicit function theorem. This black-box method with 
implicit gradients inherits most of the good properties of the 
black-box finite-difference gradient method (good robust- 
ness, considerable independence of the optimization and 
analysis codes), while substantially reducing the computa- 
tional cost. 

We also showed that this black-box (implicit gradient) 
method was equivalent to applying the “variational” or 
“optimal control” approach to design optimization directly 
to the discretized analysis problem, rather than to the 
un-discretized (continuous) problem as is usually done. 
A further analysis of this relationship will be presented in a 
future paper. 

The black-box method with implicit gradients can be 
retrofitted to most existing analysis codes to turn them into 
design codes. The amount of work required depends on the 
solution methodology employed in the analysis code. The 
largest task is to solve linear systems with a coefficient 
matrix that is the transpose of the Jacobian of the dis- 
cretized flow equations with respect to the flow variables. In 
many cases (primarily in schemes based on Newton’s 
method), this Jacobian is already computed by the analysis 
code. In other cases, it can readily be obtained by sparse dif- 
ferencing. In all cases, a solution method for the transpose 
of the Jacobian needs to be provided. While this is trivial if 
a direct factorization of the Jacobian is employed in the 
analysis code, such will rarely be the case for large scale 
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The other method we introduced was the all-at-once 
discussions and for suggesting that they pursue the all-at-once approach. 

method where the optimization simultaneously varies the 
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APPENDIX A: FLUXES FOR THE 
DIFFERENCE SCHEMES 

For completeness, we give here the formulas for the fluxes 
appearing in the Godunov, Engquist-Osher, and artificial 
viscosity schemes: 

Godunov. 

f;+1, 

i 

if uI, uj+ 1 <u*; 

f,G+1,2= p 
if uj, u,+,>u,; 

&r;2r;+ 112 
if u,<u,<u,+,; 
if u,+~ < u* < uj. 

Here,fi+ i meansf(uj+ i), etc., andf, meansf(u,). 
Engquist-Osher. f”” = fG, with the last line replaced 

b$+fi+,-fw 
Artificial viscosity. fiA+v1,2= 1/2(L.+ 1 +fi-~((u,+~ -u,)). 

We took c1= 1 in the tests reported here. 
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